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LETTER TO THE EDITOR 

Bethe-ansatz solutions of a non-string type: numerical results 

L V Avdeev 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Head Post 
Office, PO Box 79, Moscow 101O00, USSR 

Received 20 December 1988 

Abstract. For the integrable XXX antiferromagnetic ring of N spins s = 1 or s = 4 the 
numerical solutions to the Bethe-ansatz equations are found, which involve non-string 
configurations, namely multiplets. The results up to s N  = 150 are compared with higher- 
level Bethe-ansatz predictions. The absolute difference between the predicted and finite-N 
energies of the spin-zero states with a multiplet and four holes is of O( 1/ N). The coefficient 
is not the same as for the vacuum and depends on the positions of the holes. As has been 
expected, the multiplets are of an exponential accuracy in N, while sea strings are much 
more strongly deformed. 

The problem of diagonalising the Hamiltonian for quantum integrable models in the 
context of the coordinate [l] or algebraic [2] Bethe ansatz is reduced to solving the 
system of the Bethe ansatz equations. For the simplest case of the XXX Heisenberg 
antiferromagnet and its integrable generalisation [3] to arbitrary spin s, the equations 
have the form 

Aj+is= fi A j - A k + i  
J = 1 , . . . , M. 

Aj-is k = l  Aj-Ak-i 

Here, N is the number of sites of the spin ring; the number M of complex parameters 
Aj may be 0,. . . , sN. The energies E are eigenvalues of the Hamiltonian 

2s x-x, N 

n = l  
m # j  

xm=m(m+1) /2 - s ( s+ l )  s', = s(s+ 1) s N + l  =SI. 
Momenta P, and spins S of the states are expressed through the solutions {,ij}M of 
system (1): 

According to the 'string' hypothesis [ 1,4,5], every parameter A should be a member 

A =x+i[$(n+ 1)-m]+O[exp(-aN)] m = l ,  . . . ,  n a > O  (3) 
where an integer n 2 1 specifies the length of the string, and a real x its centre position. 
The antiferromagnetic vacuum comprises a sea of M = sN 2s-strings [ 5 ] .  

The string hypothesis gives a rather good general qualitative classification of states, 
their total number being in agreement [6] with the assumption of completeness. 
However, the assertion about the exponential accuracy of strings proves to be wrong 

of an n-string with an exponential accuracy as N-m:  
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in a number of cases. Even for s =f, on the background of the sea of real roots 
(1-strings), non-string configurations-quartets and wide pairs-have been predicted 
[7]. For s > i, quartets are changed to multiplets and narrow pairs may appear [8]. 
Deformations of the sea strings also become possible. Numerical computations [9] 
have shown that the minimal deviations from equation (3) for the vacuum and two-hole 
states behave as 0 ( 1 / N )  while the maximum is O(1). However, these considerable 
string deformations affect the energy rather weakly: the shift of the absolute energy 
both for the vacuum and excitations does not exceed 0 (1 /N) .  The object of the 
present letter is to find out multiplet-type solutions explicitly and to study finite-size 
corrections for them. 

At large N, one can describe the sea of 2s-strings with a density function. The 
Bethe-ansatz equations for the sea are rewritten as an integral equation for the density, 
which may be solved by the Fourier transformation. The study of the equations for 
complex-root configurations on the sea background shows that there are only three 
possibilities [8]: free narrow pairs IIm A I < s -1; wide pairs IIm AI > s +$; and multiplets 

Real parameters x and y determine the positions of all the pairs of the multiplet, 2s - 1 
narrow pairs and two intermediate pairs with 11 Im A I - sJ < 5. As well as in strings, for 
each complex root of a multiplet A (except lower members of its intermediate pairs) 
there is a successor A' lying an imaginary unit below it. The deviations Ax+iAy = 
A - A ' - i  should be exponentially small [8] 

A=x* i (y+s -m)  m = 0,. . . , 2 s  O <  y <f. (4) 

cosh( r x )  +cos( r y )  
cosh( r x )  -COS( r y )  * 

AX* + AY* = exp(-KN) K =In 

The sea contributions to the equations for the allowed configurations can be 
evaluated. Thereafter, the equations are reduced to the higher-level Bethe-ansatz form, 
where the N factors of equations (1) are cancelled. Contributions of the complex 
roots to the energy and momentum are exactly compensated for by the backflow 
reaction of the sea. Thus, the energy and momentum are completely determined by 
physical excitations, i.e. holes in the sea. In the limit of an infinite size of the ring, 
their positions may be arbitrary. However, at finite N they are discrete and correspond 
to half-integer values of the integral of the density for 2s-strings together with holes. 
This can also be written [9] as higher-level Bethe-ansatz equations. 

In the present letter the simplest multiplet-type solutions are considered, with one 
quartet (s  = 4) or sextet (s  = 1) at even N and the minimal number of holes (i.e. four 
holes) with total spin S = 0. For this case the higher-level Bethe-ansatz equations [8] 
are reduced to the form 

x-x j+i (y+l )  2y+1 =- 
j = l  I? x -x j+i (y- f )  2y-1 

,rqj = N [  ~ / 4  -tan-' exp( -rxj)] +tan-' 

2 exp[(s-$)PI-exp[-(s-$)p]-exp[-(s+$)p] 
2 cosh( 4/2)2 sinh(sp) X j = l ,  ..., 4 (7) 

where Qj are (half-) integer numbers-according to Qmax = $ N + f -  (2s)-'-which 
specify the hole positions; I Qjl s Qmax. 
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Equation (6) for the parameters of the multiplet can be solved exactly. After 
eliminating the denominator and taking the imaginary part, one gets y(4y2 - 1 )  x 
(x17+ x2+ x3 + x4 - 4x) = 0. It follows then that, for the multiplet solution (4), 

x '$(XI + X 2 + X 3 +  x4). (8) 

The real part, after formula (8) is substituted, gives a biquadratic equation for y. Its 
solution can be represented as 

4 

y = {A[; - 2A2 f ( 1  + 4A2 + 28A: - 12A4)1/2]}1/2 An=:  C ( x ~ - x ) ~ .  
j = l  

(9) 

Equations (7) have to be solved numerically. One iterates the hole coordinates, using 
formulae (8) and (9) at every step. The result allows one to compute the leading 
approximation in N+oo for the energy and momentum of the state 

4 (2n- l ) - '  integer S 
(10) 

n = l  

s-1/2 

In2+ 1 (2n)-' half-integer S: I n = l  

E, = C i.rr/cosh(rX,) - N x 
j =  1 

27r 4 
P = m N  - 2  tan-' exp(-.nxj). 

j = l  

The difference between the primary values (2) derived from the solutions to equations 
( l ) ,  on the one hand, and the higher-level approximation (5)-( 1 l), on the other hand, 
is due to finite-size corrections. As a consequence of equations (6) and (7), formula 
(1 1 )  for the momentum proves to be exact because its values are multiples of 277/ N. 
Numerical data presented below demonstrate that the absolute energy correction 
E -Em behaves like O( 1/  N), i.e. in the same way as for the vacuum and simplest 
excitations [9-111. 

The numerical computations are performed by the Newton method for the 
logarithms of equations ( 1 )  [9]. Since multiplets should have exponentially small 
deviations from formula (4), quantities of essentially different scales may be present 
in the problem. Thus, because the computer precision is limited, one has to store for 
each complex root, besides its absolute position, the value of Ax + iAy. Furthermore, 
to improve the linear system solved at every step of the iterations, the equations are 
modified as follows. To each equation for a member of a string-like chain, the equations 
for all its successors are added. This eliminates singularities in internal deformations 
of the chains from the equations for their higher members. 

The results of computing multiplet-type states with different N but about the same 
hole positions are presented in tables 1 and 2. The index 00 relates to the higher-level 
Bethe-ansatz approximation (5)-(10). On the other hand, the real and imaginary parts 
of the highest multiplet member Amax(Im -- ym+ s), the coefficient K = 
-ln(Ax2 + Ay2), , , /N characterising its deviation from the successor, the momentum 
and energy of the state (2) are computed through the solutions to equations (1). The 
quantity S = (E - E,) N controls the accuracy of the approximation (10); the S, values 
correspond to the vacuum solutions. 

For s = 1 we also present information about the sea-string deformations, namely 
A,,, and Amean , the maximum and average values of Ay over all the string-like chains. 
It should be noted that at the points xj the sign of the deformations alters, as in 
two-hole states [9]. This is reflected in the average and maximum values. 
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Table 1. Quartet-type solutions (s =;, S = O ) :  N dependence. (Note that - r2 /12=  
-0.822 467 033 424.) 

N Qj Xjm 

50 -12 
10 
11 
12 

80 -19.5 
17.5 
18.5 
19.5 

128 -31.5 
28.5 
29.5 
31.5 

200 -48.5 
44.5 
46.5 
48.5 

3 00 -72.5 
67.5 
70.5 
72.5 

-1.252 832 0 
0.653 101 12 
0.862 333 72 
1.365 244 8 

-1.403 916 72 
0.803 357 612 
1.012 484 691 
1.519 539 278 

0.826 307 48 
0.952 866 74 
1.642 247 3 1 

-1.235 321 67 
0.805 860 239 
0.963 748 648 
1.269 211 69 

-1.184032 24 
0.828 597 34 
1.002 305 24 
1.205 664 62 

-1.555 931 0 

0.406 961 9 
0.431 076 6 
0.415 359 545 
0.929 075 272 
0.482 866 2 
0.382 315 4 
0.491 795 306 
0.878 948 890 
0.466 372 6 
0.365 157 5 
0.473 087 495 
0.861 554 593 
0.450 874 7 
0.394 788 6 
0.456 742 522 
0.894 007 428 
0.463 133 7 
0.394 891 8 
0.468 814 566 
0.894 719 545 

0.223 
0.305 

0.305 
0.342 

0.364 
0.388 

0.300 
0.313 

0.289 
0.296 

-3 

-0.890 181 
-0.824 79 465 969 
37 

-0.895 606 
-0.824 136 394 052 
59 

-0.893 067 
-0.823 697 869 135 

-33.965 296 076 7 

-55.017 755 873 5 

-88.298 064 364 7 

92 
-138.110673 055 

-0.865 510 
-0.823 428 050 508 

139 
-207.433 923 708 

-0.859 953 1 
-0.828 254 238 795 

Table 2. Sextet-type solutions (s = 1, S = O ) :  N dependence. (Note that -rr2/8 = 
-1.233 700 550 14.) 

30 -7.5 
5.5 
6.5 
7.5 

50 -12.5 
10.5 
11.5 
12.5 

80 -20 
17 
19 
20 

128 -31 
28 
30 
31 

150 -36.5 
32.5 
35.5 
36.5 

- 1.266 2 
0.587 47 
0.872 13 
1.577 61 

-1.427 391 6 
0.750 800 6 
1.035 817 1 
1.750416 8 

-1.581 445 
0.740 698 
1.176765 
1.884 152 

-1.125 783 9 
0.773 952 8 
1.006604 1 
1.217 283 7 

-1.176 467 48 
0.747 517 12 
1.054 620 39 
1.263 806 19 

0.442 8 
0.459 35 
0.461 383 788 
1.463 892 21 
0.527 41 1 
0.447 459 
0.548 039 600 
1.423 892 89 
0.555 043 
0.413 279 
0.578 650910 
1.423 775 51 
0.468 014 
0.414 146 
0.478 827 931 
1.415 264 22 
0.472 369 
0.413 384 
0.483 363 361 
1.415 00005 

0.120 
0.296 

0.189 
0.236 

0.183 
0.198 

0.234 
0.253 

0.233 
0.246 

13 
-29.242 077 802 2 
-0.273 
- 1.243 593 960 24 
23 

-49.540 440 441 1 
-0.212 63 
-1.240 083 196 75 
37 

-0.187 48 
-1.238 295 840 77 
59 

-0.249 32 
-1.237 186 501 32 

-79.590 490 309 4 

-127.435 220 911 

69 
-149.452 818 318 

-0.237 879 
-1.236 904 878 80 

-0.052 827 9 
-0.012 479 9 

-0.055 786 7 
-0.012 966 2 

-0.057 110 0 
-0.009 917 90 

0.076 985 0 
-0.001 247 05 

0.077 194 9 
-0.001 269 93 
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Another projection, different multiplet-type states at the same N,  is presented in 
tables 3 and 4. One can observe how the parameters of the multiplets vary with a 
shifting of the holes. 

The following general conclusion can be made from the computations. As well as 
strings, multiplets are perfectly reliable configurations for sufficiently large N. They 
may degenerate into strings only when y approaches f or 0. Moreover, the deviations 
from the multiplet structure (4) are in fact exponentially small: K behaves like 0(1) 
and agrees reasonably with the predicted values ( 5 ) .  At the same time, deformations 
of the sea strings (at s = 1) are more considerable, between 0(1 /N)  and O(1). The 
average deformation may probably be diminished in the ‘thermodynamic’ limit of a 
very large number of excitations, only owing to deformation-sign changes at the hole 
positions. 

The higher-level Bethe ansatz (6)-( 11) provides a rather good approximation. One 
sees from tables 1 and 2 that the quantity 6 at large N approaches a constant 
(fluctuations are due to some drift of the holes). Hence, the finite-size absolute 
correction to both the ground-state and excitation energy is 0(1/N).  The leading 
asymptotics coefficient for the vacuum (for previous numerical results see [ 101 (s = i), 
[ l l ]  (s  = 1) and [9] (s up to 2)) agrees well with the value of the central charge in the 
conformal field theory [12] 

S,=(E-E,),N- - & r 2 c  c = 3s/(s  + 1). 
N - . X  

For the excited states, S differs from formula (12) and depends on the hole positions 
(tables 3 4). The comparison with the anomalous dimensions of the scaling operators 
[13] is, however, difficult because the states considered are too highly excited. The 
low-lying two-hole excitations [9] would be more appropriate, but there are also 

Tnble 3. Quartet-type solutions ( s  = 4, N = 300, S = 0): Q dependence. 

0, 

-73.5 -1.364821 57 0.587 937 6 0.380 8 145 
1.094 332 26 0.290 619 1 0.379 9 -207.696 353 473 71.5 

72.5 1.216 142 73 0.595 746 01 1 -0.868 34 
73.5 1.406 097 20 0.789 259 871 

62.5 0.655 947 17 0.401 1303 0.586 2 -206.817 631 923 
63.5 0.683 452 20 0.168 892 334 
64.5 0.713 442 96 0.896 267 176 

44.5 0.356 686 17 0.443 105 6 0.390 5 -205.206 089 162 
45.5 0.368 119 28 -0.071 645 209 -0.832 73 
46.5 0.379 897 02 0.938 997 428 

17.5 0.122 220 59 0.465 1560 0 
18.5 0.129 397 48 -0.252 869 538 -0.807 541 
19.5 0.136 636 94 0.961 900 751 

-73.5 -1.363 640 14 0.72 300 6 0.544 6 118 

-0.852 31 

-73.5 -1.363 81005 -0.064 776 9 0.351 9 64 

-73.5 -1.364 804 79 -0.244 137 4 0.167 3 -17 
0.197 3 -203.556 189 286 

-73.5 - 1.369 625 06 -0.536 278 4 0.028 6 121 
-36.5 -0.267 482 56 0.487 321 8 0.055 8 -204.409 235 838 
-35.5 -0.258 439 97 
-34.5 -0.249 566 19 0.985 490 076 

-0.547 265 385 -0.787 864 
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Table 4. Sextet-type solutions (s = 1, N = 150, S = 0): Q dependence. 

~~ ~ 

-37.5 
35.5 
36.5 
37.5 

-37.5 
34.5 
35.5 
36.5 

-37.5 
32.5 
33.5 
34.5 

-37.5 
28.5 
29.5 
30.5 

-37.5 
22.5 
23.5 
24.5 

-37.5 
10.5 
11.5 
12.5 

-37.5 
-1.5 
-0.5 

0.5 

- 1.784 453 
1.100 561 
1.387 729 
2.119 174 

-1.770 189 3 
0.924 332 2 
1.061 094 3 
1.275 987 1 

-1.765 015 46 
0.738 942 90 
0.81 1 524 92 
0.903 180 69 

-1.762 330 77 
0.538 436 98 
0.576 872 37 
0.620 055 85 

-1.761 95649 
0.364 446 98 
0.387 795 68 
0.412 636 09 

-1.764 783 69 
0.148 924 74 
0.163 725 58 
0.178 853 36 

- 1.770 475 69 
-0.016 236 79 
-0.003 036 83 

0.010 156 57 

0.705 753 
0.231 061 
0:729 061 176 
1.248 480 914 
0.372 806 1 
0.193 250 1 
0.368 102 324 
1.154 708 082 
0.172 158 3 
0.280 394 2 
0.160 400 989 
1.250 735 093 

-0.006 741 4 
0.344 188 1 

-0.023 845 271 
1.320 130 172 

0.383 285 4 
-0.170 197 903 

1.362 607 767 
-0.318 3200 

0.418 808 6 
-0.343 302 354 

1.401 552 230 
-0.444 898 2 

0.439 181 6 
-0.472 627 654 

1.424 216 927 

-0.149 269 4 

0.325 
0.295 

1.006 
1.117 

1.247 
1.474 

1.020 
1.205 

0.669 
0.784 

0.330 
0.399 

0.177 
0.231 

73 

-0.132 87 
-149.846 266 281 

70 
-149.648 265 432 

-0.143 13 

64 
-149.256 159 171 

-0.166 79 

52 
-148.490 623 758 

-0.207 09 

34 

-0.274 93 
-147.427 735 359 

-2 

-0.457 89 
-145.842 065  398 

-38 
-145.283 023 731 

-0.684 93 

-0.058 475 0 
-0.008 951 29 

0.70 843 0 
-0.005 959 21 

0.084 035 2 
-0.004 126 34 

0.090 990 2 
-0.002 579 04 

0.094 104 0 
-0.001 457 36 

0.095 862 8 
-0.OOO 275 055 

0.096 323 5 
0.OOO 500 191 

problems with them, due to the presence of 0[1/(N In N)] corrections [8,9,14] in 
addition to O( 1/ N) corrections. Although the shift of the sea strings can be estimated 
[ 141, there are still no efficient exact methods for describing their deformation, essential 
for computing the central charge and anomalous dimensions analytically. 
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