Bethe-ansatz solutions of a non-string type: Numerical results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L551
(http://iopscience.iop.org/0305-4470/22/13/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:44

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Bethe-ansatz solutions of a non-string type: numerical results

LV Avdeev
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Head Post Office, PO Box 79, Moscow 101000, USSR

Received 20 December 1988

Abstract

For the integrable XXX antiferromagnetic ring of N spins $s=1$ or $s=\frac{1}{2}$ the numerical solutions to the Bethe-ansatz equations are found, which involve non-string configurations, namely multiplets. The results up to $s N=150$ are compared with higherlevel Bethe-ansatz predictions. The absolute difference between the predicted and finite- N energies of the spin-zero states with a multiplet and four holes is of $O(1 / N)$. The coefficient is not the same as for the vacuum and depends on the positions of the holes. As has been expected, the multiplets are of an exponential accuracy in N, while sea strings are much more strongly deformed.

The problem of diagonalising the Hamiltonian for quantum integrable models in the context of the coordinate [1] or algebraic [2] Bethe ansatz is reduced to solving the system of the Bethe ansatz equations. For the simplest case of the XXX Heisenberg antiferromagnet and its integrable generalisation [3] to arbitrary spin s, the equations have the form

$$
\begin{equation*}
\frac{\lambda_{j}+\mathrm{i} s}{\lambda_{j}-\mathrm{i} s}=\prod_{k=1}^{M} \frac{\lambda_{j}-\lambda_{k}+\mathrm{i}}{\lambda_{j}-\lambda_{k}-\mathrm{i}} \quad j=1, \ldots, M . \tag{1}
\end{equation*}
$$

Here, N is the number of sites of the spin ring; the number M of complex parameters λ_{j} may be $0, \ldots, s N$. The energies E are eigenvalues of the Hamiltonian

$$
\begin{array}{ll}
H=\sum_{n=1}^{N} h\left(S_{n} \cdot S_{n+1}\right) \quad h(x)=-\sum_{j=0}^{2 s-1}\left(\sum_{k=j+1}^{2 s} \frac{1}{k}\right) \prod_{\substack{m=0 \\
m \neq j}}^{2 s} \frac{x-x_{m}}{x_{j}-x_{m}} \\
x_{m}=m(m+1) / 2-s(s+1) \quad \boldsymbol{S}_{n}^{2}=s(s+1) \quad S_{N+1} \equiv \boldsymbol{S}_{1} .
\end{array}
$$

Momenta P, and spins S of the states are expressed through the solutions $\left\{\lambda_{j}\right\}_{M}$ of system (1):

$$
\begin{equation*}
E=-\sum_{j=1}^{M} \frac{s}{\lambda_{j}^{2}+s^{2}} \quad P \stackrel{2 \pi}{=} \frac{1}{\mathrm{i}} \sum_{j=1}^{M} \ln \left(\frac{\lambda_{j}+\mathrm{i} s}{\lambda_{j}-\mathrm{i} s}\right) \quad S=s N-M . \tag{2}
\end{equation*}
$$

According to the 'string' hypothesis [1,4,5], every parameter λ should be a member of an n-string with an exponential accuracy as $N \rightarrow \infty$:

$$
\begin{equation*}
\lambda=x+\mathrm{i}\left[\frac{1}{2}(n+1)-m\right]+\mathrm{O}[\exp (-\alpha N)] \quad m=1, \ldots, n \quad \alpha>0 \tag{3}
\end{equation*}
$$

where an integer $n \geqslant 1$ specifies the length of the string, and a real x its centre position. The antiferromagnetic vacuum comprises a sea of $M=s N 2 s$-strings [5].

The string hypothesis gives a rather good general qualitative classification of states, their total number being in agreement [6] with the assumption of completeness. However, the assertion about the exponential accuracy of strings proves to be wrong
in a number of cases. Even for $s=\frac{1}{2}$, on the background of the sea of real roots (1-strings), non-string configurations-quartets and wide pairs-have been predicted [7]. For $s>\frac{1}{2}$, quartets are changed to multiplets and narrow pairs may appear [8]. Deformations of the sea strings also become possible. Numerical computations [9] have shown that the minimal deviations from equation (3) for the vacuum and two-hole states behave as $O(1 / N)$ while the maximum is $O(1)$. However, these considerable string deformations affect the energy rather weakly: the shift of the absolute energy both for the vacuum and excitations does not exceed $O(1 / N)$. The object of the present letter is to find out multiplet-type solutions explicitly and to study finite-size corrections for them.

At large N, one can describe the sea of $2 s$-strings with a density function. The Bethe-ansatz equations for the sea are rewritten as an integral equation for the density, which may be solved by the Fourier transformation. The study of the equations for complex-root configurations on the sea background shows that there are only three possibilities [8]: free narrow pairs $|\operatorname{Im} \lambda|<s-\frac{1}{2}$; wide pairs $|\operatorname{Im} \lambda|>s+\frac{1}{2}$; and multiplets

$$
\begin{equation*}
\lambda \approx x \pm \mathrm{i}(y+s-m) \quad m=0, \ldots, 2 s \quad 0<y<\frac{1}{2} . \tag{4}
\end{equation*}
$$

Real parameters x and y determine the positions of all the pairs of the multiplet, $2 s-1$ narrow pairs and two intermediate pairs with $||\operatorname{Im} \lambda|-s|<\frac{1}{2}$. As well as in strings, for each complex root of a multiplet λ (except lower members of its intermediate pairs) there is a successor λ^{\prime} lying an imaginary unit below it. The deviations $\Delta x+\mathrm{i} \Delta y=$ $\lambda-\lambda^{\prime}-\mathrm{i}$ should be exponentially small [8]

$$
\begin{equation*}
\Delta x^{2}+\Delta y^{2}=\exp (-K N) \quad K=\ln \frac{\cosh (\pi x)+\cos (\pi y)}{\cosh (\pi x)-\cos (\pi y)} \tag{5}
\end{equation*}
$$

The sea contributions to the equations for the allowed configurations can be evaluated. Thereafter, the equations are reduced to the higher-level Bethe-ansatz form, where the N factors of equations (1) are cancelled. Contributions of the complex roots to the energy and momentum are exactly compensated for by the backflow reaction of the sea. Thus, the energy and momentum are completely determined by physical excitations, i.e. holes in the sea. In the limit of an infinite size of the ring, their positions may be arbitrary. However, at finite N they are discrete and correspond to half-integer values of the integral of the density for $2 s$-strings together with holes. This can also be written [9] as higher-level Bethe-ansatz equations.

In the present letter the simplest multiplet-type solutions are considered, with one quartet ($s=\frac{1}{2}$) or sextet ($s=1$) at even N and the minimal number of holes (i.e. four holes) with total spin $S=0$. For this case the higher-level Bethe-ansatz equations [8] are reduced to the form

$$
\begin{align*}
& \prod_{j=1}^{4} \frac{x-x_{j}+\mathrm{i}\left(y+\frac{1}{2}\right)}{x-x_{j}+\mathrm{i}\left(y-\frac{1}{2}\right)}=\frac{2 y+1}{2 y-1} \tag{6}\\
& \pi Q_{j}=N\left[\pi / 4-\tan ^{-1} \exp \left(-\pi x_{j}\right)\right]+\tan ^{-1}\left(\frac{x-x_{j}}{y+\frac{1}{2}}\right)+\tan ^{-1}\left(\frac{x-x_{j}}{\frac{1}{2}-y}\right) \\
& \quad+\int_{0}^{\infty} \frac{\mathrm{d} p}{p} \sum_{k=1}^{4} \sin \left[\left(x_{j}-x_{k}\right) p\right] \\
& \quad \times \frac{2 \exp \left[\left(s-\frac{1}{2}\right) p\right]-\exp \left[-\left(s-\frac{1}{2}\right) p\right]-\exp \left[-\left(s+\frac{1}{2}\right) p\right]}{2 \cosh (p / 2) 2 \sinh (s p)} \quad j=1, \ldots, 4 \tag{7}
\end{align*}
$$

where Q_{j} are (half-) integer numbers-according to $Q_{\max }=\frac{1}{4} N+\frac{1}{2}-(2 s)^{-1}$-which specify the hole positions; $\left|Q_{j}\right| \leqslant Q_{\max }$.

Equation (6) for the parameters of the multiplet can be solved exactly. After eliminating the denominator and taking the imaginary part, one gets $y\left(4 y^{2}-1\right) \times$ $\left(x_{1}+x_{2}+x_{3}+x_{4}-4 x\right)=0$. It follows then that, for the multiplet solution (4),

$$
\begin{equation*}
x=\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) . \tag{8}
\end{equation*}
$$

The real part, after formula (8) is substituted, gives a biquadratic equation for y. Its solution can be represented as
$y=\left\{\frac{1}{6}\left[\frac{1}{2}-2 A_{2} \pm\left(1+4 A_{2}+28 A_{2}^{2}-12 A_{4}\right)^{1 / 2}\right]\right\}^{1 / 2} \quad A_{n}=\frac{1}{4} \sum_{j=1}^{4}\left(x_{j}-x\right)^{n}$.
Equations (7) have to be solved numerically. One iterates the hole coordinates, using formulae (8) and (9) at every step. The result allows one to compute the leading approximation in $N \rightarrow \infty$ for the energy and momentum of the state

$$
\begin{align*}
& E_{\infty}=\sum_{j=1}^{4} \frac{1}{2} \pi / \cosh \left(\pi x_{j}\right)-N \times \begin{cases}\sum_{n=1}^{s}(2 n-1)^{-1} & \text { integer } S \\
\ln 2+\sum_{n=1}^{s-1 / 2}(2 n)^{-1} & \text { half-integer } S\end{cases} \tag{10}\\
& P \stackrel{2 \pi}{=} \pi s N-2 \sum_{j=1}^{4} \tan ^{-1} \exp \left(-\pi x_{j}\right) .
\end{align*}
$$

The difference between the primary values (2) derived from the solutions to equations (1), on the one hand, and the higher-level approximation (5)-(11), on the other hand, is due to finite-size corrections. As a consequence of equations (6) and (7), formula (11) for the momentum proves to be exact because its values are multiples of $2 \pi / N$. Numerical data presented below demonstrate that the absolute energy correction $E-E_{\infty}$ behaves like $O(1 / N)$, i.e. in the same way as for the vacuum and simplest excitations [9-11].

The numerical computations are performed by the Newton method for the logarithms of equations (1) [9]. Since multiplets should have exponentially small deviations from formula (4), quantities of essentially different scales may be present in the problem. Thus, because the computer precision is limited, one has to store for each complex root, besides its absolute position, the value of $\Delta x+i \Delta y$. Furthermore, to improve the linear system solved at every step of the iterations, the equations are modified as follows. To each equation for a member of a string-like chain, the equations for all its successors are added. This eliminates singularities in internal deformations of the chains from the equations for their higher members.

The results of computing multiplet-type states with different N but about the same hole positions are presented in tables 1 and 2 . The index ∞ relates to the higher-level Bethe-ansatz approximation (5)-(10). On the other hand, the real and imaginary parts of the highest multiplet member $\lambda_{\max }\left(\operatorname{Im} \simeq y_{\infty}+s\right)$, the coefficient $K=$ $-\ln \left(\Delta x^{2}+\Delta y^{2}\right)_{\max } / N$ characterising its deviation from the successor, the momentum and energy of the state (2) are computed through the solutions to equations (1). The quantity $\delta=\left(E-E_{\infty}\right) N$ controls the accuracy of the approximation (10); the δ_{v} values correspond to the vacuum solutions.

For $s=1$ we also present information about the sea-string deformations, namely $\Delta_{\text {max }}$ and $\Delta_{\text {mean }}$, the maximum and average values of Δy over all the string-like chains. It should be noted that at the points x_{j} the sign of the deformations alters, as in two-hole states [9]. This is reflected in the average and maximum values.

Table 1. Quartet-type solutions ($s=\frac{1}{2}, S=0$): N dependence. (Note that $-\pi^{2} / 12=$ -0.822 467033 424.)

N	Q_{j}	$x_{j \infty}$	$x_{\infty}, y_{\infty} ; \lambda_{\text {max }}$	K_{∞}, K	$P \frac{N}{2 \pi}, E, \delta, \delta_{v}$
50	-12	-1.2528320	0.4069619	0.223	-3
	10	0.65310112	0.4310766	0.305	-33.9652960767
	11	0.86233372	0.415359545		-0.890181
	12	1.3652448	0.929075272		-0.82479465969
80	-19.5	-1.40391672	0.4828662	0.305	37
	17.5	0.803357612	0.3823154	0.342	-555.0177558735
	18.5	1.012484691	0.491795306		-0.895606
	19.5	1.519539278	0.878948890		-0.824136394052
128	-31.5	-1.5559310	0.4663726	0.364	59
	28.5	0.82630748	0.3651575	0.388	-88.2980643647
	29.5	0.95286674	0.473087495		-0.893067
	31.5	1.64224731	0.861554593		-0.823697869135
200	-48.5	-1.23532167	0.4508747	0.300	92
	44.5	0.805860239	0.3947886	0.313	-138.110673055
	46.5	0.963748648	0.456742522		-0.865510
	48.5	1.26921169	0.894007428		-0.823428050508
300	-72.5	-1.18403224	0.4631337	0.289	139
	67.5	0.82859734	0.3948918	0.296	-207.433923708
	70.5	1.00230524	0.468814566		-0.8599531
	72.5	1.20566462	0.894719545		-0.828254238795

Table 2. Sextet-type solutions $(s=1, S=0)$; N dependence. (Note that $-\pi^{2} / 8=$ -1.23370055014 .)

N	Q_{j}	$\boldsymbol{x}_{j \infty}$	$x_{\infty}, y_{\infty} ; \lambda_{\text {max }}$	K_{∞}, K	$P \frac{N}{2 \pi}, E, \delta, \delta_{\mathrm{v}}$	$\Delta_{\text {max }}, \Delta_{\text {mean }}$
30	-7.5	-1.2662	0.4428	0.120	13	-0.0528279
	5.5	0.58747	0.45935	0.296	-29.242077 8022	-0.012 4799
	6.5	0.87213	0.461383788		-0.273	
	7.5	1.57761	1.46389221		-1.243 59396024	
50	-12.5	-1.427 3916	0.527411	0.189	23	-0.055 7867
	10.5	0.7508006	0.447459	0.236	-49.540 4404411	-0.0129662
	11.5	1.0358171	0.548039600		-0.21263	
	12.5	1.7504168	1.42389289		-1.240 08319675	
80	-20	-1.581445	0.555043	0.183	37	-0.057 1100
	17	0.740698	0.413279	0.198	-79.590 4903094	-0.009 91790
	19	1.176765	0.578650910		-0.18748	
	20	1.884152	1.42377551		-1.238 29584077	
128	-31	-1.1257839	0.468014	0.234	59	0.0769850
	28	0.7739528	0.414146	0.253	-127.435 220911	-0.001 24705
	30	1.0066041	0.478827931		-0.249 32	
	31	1.2172837	1.41526422		-1.23718650132	
150	-36.5	-1.17646748	0.472369	0.233	69	0.0771949
	32.5	0.74751712	0.413384	0.246	-149.452 818318	-0.001 26993
	35.5	1.05462039	0.483363361		-0.237879	
	36.5	1.26380619	1.41500005		-1.23690487880	

Another projection, different multiplet-type states at the same N, is presented in tables 3 and 4 . One can observe how the parameters of the multiplets vary with a shifting of the holes.

The following general conclusion can be made from the computations. As well as strings, multiplets are perfectly reliable configurations for sufficiently large N. They may degenerate into strings only when y approaches $\frac{1}{2}$ or 0 . Moreover, the deviations from the multiplet structure (4) are in fact exponentially small: K behaves like O (1) and agrees reasonably with the predicted values (5). At the same time, deformations of the sea strings (at $s=1$) are more considerable, between $O(1 / N)$ and $O(1)$. The average deformation may probably be diminished in the 'thermodynamic' limit of a very large number of excitations, only owing to deformation-sign changes at the hole positions.

The higher-level Bethe ansatz (6)-(11) provides a rather good approximation. One sees from tables 1 and 2 that the quantity δ at large N approaches a constant (fluctuations are due to some drift of the holes). Hence, the finite-size absolute correction to both the ground-state and excitation energy is $\mathrm{O}(1 / N)$. The leading asymptotics coefficient for the vacuum (for previous numerical results see [10] ($s=\frac{1}{2}$), [11] ($s=1$) and [9] (s up to $\frac{9}{2}$)) agrees well with the value of the central charge in the conformal field theory [12]

$$
\begin{equation*}
\delta_{\mathrm{v}}=\left(E-E_{x}\right)_{\mathrm{V}} N \underset{N \rightarrow \infty}{\longrightarrow}-\frac{1}{12} \pi^{2} c \quad c=3 s /(s+1) \tag{12}
\end{equation*}
$$

For the excited states, δ differs from formula (12) and depends on the hole positions (tables 34). The comparison with the anomalous dimensions of the scaling operators [13] is, however, difficult because the states considered are too highly excited. The low-lying two-hole excitations [9] would be more appropriate, but there are also

Table 3. Quartet-type solutions ($s=\frac{1}{2}, N=300, S=0$): Q dependence.

	$\boldsymbol{x}_{j \propto}$	$\boldsymbol{x}_{\infty}, y_{\infty} ; \lambda_{\text {max }}$	K_{∞}, K	$P \frac{N}{2 \pi}, E, \delta$
-73.5	-1.36482157	0.5879376	0.3808	145
71.5	1.09433226	0.2906191	0.3799	-207.696353473
72.5	1.21614273	0.595746011		-0.86834
73.5	1.40609720	0.789259871		
-73.5	-1.36364014	0.723006	0.5446	118
62.5	0.65594717	0.4011303	0.5862	-206.817631923
63.5	0.68345220	0.168892334		-0.85231
64.5	0.71344296	0.896267176		
-73.5	-1.36381005	-0.0647769	0.3519	64
44.5	0.35668617	0.4431056	0.3905	-205.206089162
45.5	0.36811928	-0.071645209		-0.83273
46.5	0.37989702	0.938997428		
-73.5	-1.36480479	-0.2441374	0.1673	-17
17.5	0.12222059	0.46515600	0.1973	-203.556189286
18.5	0.12939748	-0.252869538		-0.807541
19.5	0.13663694	0.961900751		
-73.5	-1.36962506	-0.5362784	0.0286	121
-36.5	-0.26748256	0.4873218	0.0558	-204.409235838
-35.5	-0.25843997	-0.547265385		-0.787864
-34.5	-0.24956619	0.985490076		

Table 4. Sextet-type solutions ($s=1, N=150, S=0$): Q dependence.

Q_{j}	$\boldsymbol{x}_{j \infty}$	$x_{\infty}, y_{\infty} ; \lambda_{\text {max }}$	K_{∞}, K	$P \frac{N}{2 \pi}, E, \delta$	$\Delta_{\text {max }}, \Delta_{\text {mean }}$
-37.5	-1.784 453	0.705753	0.325	73	-0.058 4750
35.5	1.100561	0.231061	0.295	-149.846266281	-0.00895129
36.5	1.387729	0.729061176		-0.132 87	
37.5	2.119174	1.248480914			
-37.5	-1.770 1893	0.3728061	1.006	70	0.708430
34.5	0.9243322	0.1932501	1.117	-149.648 265432	-0.005 95921
35.5	1.0610943	0.368102324		-0.14313	
36.5	1.2759871	1.154708082			
-37.5	-1.765 01546	0.1721583	1.247	64	0.0840352
32.5	0.73894290	0.2803942	1.474	-149.256159 171	-0.004 12634
33.5	0.81152492	0.160400989		-0.166 79	
34.5	0.90318069	1.250735093			
-37.5	-1.762 33077	-0.006 7414	1.020	52	0.0909902
28.5	0.53843698	0.3441881	1.205	-148.490 623758	-0.002 57904
29.5	0.57687237	-0.023 845271		-0.207 09	
30.5	0.62005585	1.320130172			
-37.5	-1.76195649	-0.149 2694	0.669	34	0.0941040
22.5	0.36444698	0.3832854	0.784	-147.427735 359	-0.001 45736
23.5	0.38779568	-0.170 197903		-0.27493	
24.5	0.41263609	1.362607767			
-37.5	-1.76478369	-0.3183200	0.330	-2	0.0958628
10.5	0.14892474	0.4188086	0.399	-145.842 065398	-0.000 275055
11.5	0.16372558	-0.343 302354		-0.457 89	
12.5	0.17885336	1.401552230			
-37.5	-1.770475 69	-0.4448982	0.177	-38	0.0963235
-1.5	-0.016 23679	0.4391816	0.231	-145.283 023731	0.000500191
-0.5	-0.003 03683	-0.472627654		-0.684 93	
0.5	0.01015657	1.424216927			

problems with them, due to the presence of $\mathrm{O}[1 /(N \ln N)]$ corrections [8,9,14] in addition to $\mathrm{O}(1 / N)$ corrections. Although the shift of the sea strings can be estimated [14], there are still no efficient exact methods for describing their deformation, essential for computing the central charge and anomalous dimensions analytically.

References

[1] Bethe H 1931 Z. Phys. 71205
[2] Faddeev L D 1980 Contemp. Math. Phys. C 1107
Izergin A G and Korepin V E 1982 Fiz. Elem. Chast. Atomn. Yadra 13501
[3] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Lett. Math. Phys. 5393 Kulish P P and Sklyanin E K 1982 Lecture Notes in Physics 151 (Berlin: Springer) p 61
[4] Takahashi M 1971 Progr. Theor. Phys. 46401
Faddeev L D and Takhtajan L A 1981 Zap. Nauchn. Semin. LOMI 109134
[5] Takhtajan L A 1982 Phys. Lett. 87A 479
Babujian H M 1983 Nucl. Phys. B 215317
[6] Kirillov A N 1983 Zap. Nauchn. Semin. LOMI 13188
[7] Destri C and Lowenstein J H 1982 Nucl. Phys. B 205369
Woynarovich F 1982 J. Phys. A: Math. Gen. 152985
[8] Avdeev L V and Dörfel B-D 1985 Nucl. Phys. B 257253
[9] Avdeev L V and Dörfel B-D 1987 Teor. Mat. Fiz. 71272
[10] Avdeev L V and Dörfel B-D 1986 J. Phys. A: Math. Gen. 19 L13
[11] Alcaraz F C and Martins M J 1988 J. Phys. A: Math. Gen. 21 L381
[12] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241333 Knizhnik V G and Zamolodchikov A B 1984 Nucl. Phys. B 24783 Affleck I 1986 Phys. Rev. Lett. 56746
[13] Cardy J L 1984 J. Phys. A: Math. Gen. 17 L385
[14] Woynarovich F and Eckle H-P 1987 J. Phys. A: Math. Gen. 20 L97

